A2-ILT: GPU accelerated ILT with spatial attention mechanism

Qijing Wang, Bentian Jiang, Martin D. F. Wong, Evangeline F. Y. Young
{"title":"A2-ILT: GPU accelerated ILT with spatial attention mechanism","authors":"Qijing Wang, Bentian Jiang, Martin D. F. Wong, Evangeline F. Y. Young","doi":"10.1145/3489517.3530579","DOIUrl":null,"url":null,"abstract":"Inverse lithography technology (ILT) is one of the promising resolution enhancement techniques (RETs) in modern design-for-manufacturing closure, however, it suffers from huge computational overhead and unaffordable mask writing time. In this paper, we propose A2-ILT, a GPU-accelerated ILT framework with spatial attention mechanism. Based on the previous GPU-accelerated ILT flow, we significantly improve the ILT quality by introducing spatial attention map and on-the-fly mask rectilinearization, and strengthen the robustness by Reinforcement-Learning deployment. Experimental results show that, comparing to the state-of-the-art solutions, A2-ILT achieves 5.06% and 11.60% reduction in printing error and process variation band with a lower mask complexity and superior runtime performance.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Inverse lithography technology (ILT) is one of the promising resolution enhancement techniques (RETs) in modern design-for-manufacturing closure, however, it suffers from huge computational overhead and unaffordable mask writing time. In this paper, we propose A2-ILT, a GPU-accelerated ILT framework with spatial attention mechanism. Based on the previous GPU-accelerated ILT flow, we significantly improve the ILT quality by introducing spatial attention map and on-the-fly mask rectilinearization, and strengthen the robustness by Reinforcement-Learning deployment. Experimental results show that, comparing to the state-of-the-art solutions, A2-ILT achieves 5.06% and 11.60% reduction in printing error and process variation band with a lower mask complexity and superior runtime performance.
A2-ILT: GPU加速ILT,具有空间注意机制
逆光刻技术(ILT)是现代面向制造的设计封装中很有前途的分辨率增强技术(ret)之一,但它存在巨大的计算开销和难以承受的掩模写入时间。在本文中,我们提出了一个基于gpu加速的空间注意机制ILT框架A2-ILT。在原有gpu加速ILT流的基础上,引入空间注意图和动态掩模线性化,显著提高了ILT质量,并通过强化学习部署增强了鲁棒性。实验结果表明,与现有解决方案相比,A2-ILT的打印误差和工艺变化幅度分别降低了5.06%和11.60%,且掩模复杂度较低,运行时性能优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信