T. Basak, S. Sasmal, S. Chakraborty, S. Chakrabarti
{"title":"Modeling of lower ionospheric response during solar X-ray events using propagating radio wave signal","authors":"T. Basak, S. Sasmal, S. Chakraborty, S. Chakrabarti","doi":"10.23919/URSIAP-RASC.2019.8738537","DOIUrl":null,"url":null,"abstract":"The excess solar X-ray radiation during solar flares causes an enhancement of ionization in the lower ionospheric D-region and hence affects sub-ionospherically propagating Very Low Frequency (VLF) radio wave signal amplitude and phase. VLF signal amplitude and dynamic phase perturbation $(\\Delta A)$ and amplitude time delay $(\\Delta t)$ (also the corresponding solar X-ray as measured by GOES-15) of several VLF transmitters such as NWC/19.8 kHz, VTX/18.2 kHz etc. signals have been computed for solar flares. In the first part of the work, using the well-known Long Wave Propagation Capability technique, we simulated the flare induced excess amount of lower ionospheric electron density profile by amplitude perturbation method [1]. Unperturbed D-region electron density is also obtained from simulation with the help of the 2-component D-region model and compared with International Reference Ionosphere-model results. Further, in the second part, we compute the corresponding ‘sluggishness’ through ionospheric time delay and effective electron recombination coefficient $(\\alpha_{eff})$ analysis [1]. We find that while the time delay is anti-correlated with the flare peak energy flux $(\\varphi_{max})$ which is independent of solar zenith angle values [2, 3].","PeriodicalId":344386,"journal":{"name":"2019 URSI Asia-Pacific Radio Science Conference (AP-RASC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 URSI Asia-Pacific Radio Science Conference (AP-RASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIAP-RASC.2019.8738537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The excess solar X-ray radiation during solar flares causes an enhancement of ionization in the lower ionospheric D-region and hence affects sub-ionospherically propagating Very Low Frequency (VLF) radio wave signal amplitude and phase. VLF signal amplitude and dynamic phase perturbation $(\Delta A)$ and amplitude time delay $(\Delta t)$ (also the corresponding solar X-ray as measured by GOES-15) of several VLF transmitters such as NWC/19.8 kHz, VTX/18.2 kHz etc. signals have been computed for solar flares. In the first part of the work, using the well-known Long Wave Propagation Capability technique, we simulated the flare induced excess amount of lower ionospheric electron density profile by amplitude perturbation method [1]. Unperturbed D-region electron density is also obtained from simulation with the help of the 2-component D-region model and compared with International Reference Ionosphere-model results. Further, in the second part, we compute the corresponding ‘sluggishness’ through ionospheric time delay and effective electron recombination coefficient $(\alpha_{eff})$ analysis [1]. We find that while the time delay is anti-correlated with the flare peak energy flux $(\varphi_{max})$ which is independent of solar zenith angle values [2, 3].