{"title":"Efficient Treatment of Uncertainty in System Reliability Analysis using Importance Measures","authors":"H. Aliee, Faramarz Khosravi, J. Teich","doi":"10.1109/DSN.2019.00022","DOIUrl":null,"url":null,"abstract":"The reliability of today's electronic products suffers from a growing variability of failure and ageing effects. In this paper, we investigate a technique for the efficient derivation of uncertainty distributions of system reliability. We assume that a system is composed of unreliable components whose reliabilities are modeled as probability distributions. Existing Monte Carlo (MC) simulation-based techniques, which iteratively select a sample from the probability distributions of the components, often suffer from high execution time and/or poor coverage of the sample space. To avoid the costly re-evaluation of a system reliability during MC simulation, we propose to employ the Taylor expansion of the system reliability function. Moreover, we propose a stratified sampling technique which is based on the fact that the contribution (or importance) of the components on the uncertainty of their system may not be equivalent. This technique finely/coarsely stratifies the probability distribution of the components with high/low contribution. The experimental results show that the proposed technique is more efficient and provides more accurate results compared to previously proposed techniques.","PeriodicalId":271955,"journal":{"name":"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The reliability of today's electronic products suffers from a growing variability of failure and ageing effects. In this paper, we investigate a technique for the efficient derivation of uncertainty distributions of system reliability. We assume that a system is composed of unreliable components whose reliabilities are modeled as probability distributions. Existing Monte Carlo (MC) simulation-based techniques, which iteratively select a sample from the probability distributions of the components, often suffer from high execution time and/or poor coverage of the sample space. To avoid the costly re-evaluation of a system reliability during MC simulation, we propose to employ the Taylor expansion of the system reliability function. Moreover, we propose a stratified sampling technique which is based on the fact that the contribution (or importance) of the components on the uncertainty of their system may not be equivalent. This technique finely/coarsely stratifies the probability distribution of the components with high/low contribution. The experimental results show that the proposed technique is more efficient and provides more accurate results compared to previously proposed techniques.