Internet of Things (IoT) Device Investigative Analysis Using Machine-to-Machine (M2M) Framework

Phaneendra Kanakamedala, Yarra Harika, Mamilla Krishnaveni, B. Nallani
{"title":"Internet of Things (IoT) Device Investigative Analysis Using Machine-to-Machine (M2M) Framework","authors":"Phaneendra Kanakamedala, Yarra Harika, Mamilla Krishnaveni, B. Nallani","doi":"10.47392/irjash.2023.s007","DOIUrl":null,"url":null,"abstract":"As we know that now a days the possibility of the uninterrupted attacks on the IOT devices are increasing. The less memory and the minute process-ing power of these appliances make it tough for the security analyst to store the records of the different attacks. The forensic analysis is used to evaluate the damage done on the devices due to numerous attacks. In this mecha-nism the attacks on the IOT devices are detects undoubtedly by using machine-to-machine (M2M) framework. In addition to the using machine-to-machine framework the machine learning algorithms also been used to identify various attacks automatically. Here we use the third-party logging server in order to issue. The execution will be studied in the form of accuracy, precision and the Random Forest gives the most accuracy.","PeriodicalId":244861,"journal":{"name":"International Research Journal on Advanced Science Hub","volume":"313 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Science Hub","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjash.2023.s007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As we know that now a days the possibility of the uninterrupted attacks on the IOT devices are increasing. The less memory and the minute process-ing power of these appliances make it tough for the security analyst to store the records of the different attacks. The forensic analysis is used to evaluate the damage done on the devices due to numerous attacks. In this mecha-nism the attacks on the IOT devices are detects undoubtedly by using machine-to-machine (M2M) framework. In addition to the using machine-to-machine framework the machine learning algorithms also been used to identify various attacks automatically. Here we use the third-party logging server in order to issue. The execution will be studied in the form of accuracy, precision and the Random Forest gives the most accuracy.
使用机器对机器(M2M)框架的物联网(IoT)设备调查分析
正如我们所知,现在对物联网设备进行不间断攻击的可能性正在增加。这些设备的内存更少,处理能力更弱,这使得安全分析人员很难存储不同攻击的记录。取证分析用于评估由于大量攻击对设备造成的损害。在这种机制中,对物联网设备的攻击无疑是通过使用机器对机器(M2M)框架来检测的。除了使用机器对机器框架外,还使用机器学习算法自动识别各种攻击。这里我们使用第三方日志服务器来发出。执行将以准确性的形式进行研究,而随机森林给出的精度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信