TempoCave: Visualizing Dynamic Connectome Datasets to Support Cognitive Behavioral Therapy

R. Xu, M. M. Thomas, A. Leow, O. Ajilore, A. Forbes
{"title":"TempoCave: Visualizing Dynamic Connectome Datasets to Support Cognitive Behavioral Therapy","authors":"R. Xu, M. M. Thomas, A. Leow, O. Ajilore, A. Forbes","doi":"10.1109/VISUAL.2019.8933544","DOIUrl":null,"url":null,"abstract":"We introduce TempoCave, a novel visualization application for analyzing dynamic brain networks, or connectomes. TempoCave provides a range of functionality to explore metrics related to the activity patterns and modular affiliations of different regions in the brain. These patterns are calculated by processing raw data retrieved functional magnetic resonance imaging (fMRI) scans, which creates a network of weighted edges between each brain region, where the weight indicates how likely these regions are to activate synchronously. TempoCave supports the analysis needs of clinical psychologists, who examine these modular affiliations and weighted edges and their temporal dynamics, utilizing them to understand relationships between neurological disorders and brain activity, which could have significant impact on how patients are diagnosed and treated. In addition to summarizing the main functionality of TempoCave, we present a real world use case that analyzes pre- and post-treatment connectome datasets from 27 subjects in a clinical study investigating the use of cognitive behavior therapy to treat major depression disorder, indicating that TempoCave can provide new insight into the dynamic behavior of the human brain.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We introduce TempoCave, a novel visualization application for analyzing dynamic brain networks, or connectomes. TempoCave provides a range of functionality to explore metrics related to the activity patterns and modular affiliations of different regions in the brain. These patterns are calculated by processing raw data retrieved functional magnetic resonance imaging (fMRI) scans, which creates a network of weighted edges between each brain region, where the weight indicates how likely these regions are to activate synchronously. TempoCave supports the analysis needs of clinical psychologists, who examine these modular affiliations and weighted edges and their temporal dynamics, utilizing them to understand relationships between neurological disorders and brain activity, which could have significant impact on how patients are diagnosed and treated. In addition to summarizing the main functionality of TempoCave, we present a real world use case that analyzes pre- and post-treatment connectome datasets from 27 subjects in a clinical study investigating the use of cognitive behavior therapy to treat major depression disorder, indicating that TempoCave can provide new insight into the dynamic behavior of the human brain.
TempoCave:可视化动态连接体数据集以支持认知行为治疗
我们介绍TempoCave,一个新的可视化应用程序,用于分析动态大脑网络,或连接体。TempoCave提供了一系列功能来探索与大脑中不同区域的活动模式和模块关联相关的指标。这些模式是通过处理功能磁共振成像(fMRI)扫描的原始数据计算出来的,它在每个大脑区域之间创建一个加权边缘网络,其中权重表明这些区域同步激活的可能性。TempoCave支持临床心理学家的分析需求,他们检查这些模块关联和加权边缘及其时间动态,利用它们来理解神经系统疾病和大脑活动之间的关系,这可能对如何诊断和治疗患者产生重大影响。除了总结TempoCave的主要功能外,我们还提出了一个真实的用例,分析了在一项研究认知行为疗法治疗重度抑郁症的临床研究中27名受试者的治疗前和治疗后的连接组数据集,表明TempoCave可以为人类大脑的动态行为提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信