Using mixed integer optimisation to select variables for a store choice model

Toshiki Sato, Yuichi Takano, Takanobu Nakahara
{"title":"Using mixed integer optimisation to select variables for a store choice model","authors":"Toshiki Sato, Yuichi Takano, Takanobu Nakahara","doi":"10.1504/IJKESDP.2016.075980","DOIUrl":null,"url":null,"abstract":"This paper develops a store choice model to investigate consumers' store choice behaviour through the use of actual scanner panel data. For this purpose, we use the variable selection method proposed by Sato et al. 2015, which is based on mixed integer optimisation for logistic regression. Computational results demonstrated that when the Akaike information criterion is used as a goodness-of-fit measure, our approach yields a predictive performance better than that obtained using the common stepwise method of variable selection. Moreover, we clarified store choice factors by analysing the results of variable selection.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKESDP.2016.075980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper develops a store choice model to investigate consumers' store choice behaviour through the use of actual scanner panel data. For this purpose, we use the variable selection method proposed by Sato et al. 2015, which is based on mixed integer optimisation for logistic regression. Computational results demonstrated that when the Akaike information criterion is used as a goodness-of-fit measure, our approach yields a predictive performance better than that obtained using the common stepwise method of variable selection. Moreover, we clarified store choice factors by analysing the results of variable selection.
使用混合整数优化为存储选择模型选择变量
本文开发了一个商店选择模型,通过使用实际扫描面板数据来研究消费者的商店选择行为。为此,我们使用了Sato et al. 2015提出的变量选择方法,该方法基于逻辑回归的混合整数优化。计算结果表明,当使用赤池信息准则作为拟合优度度量时,我们的方法比使用常用的逐步变量选择方法获得的预测性能更好。此外,通过对变量选择结果的分析,明确了门店选择因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信