Zi-Yuan Liu, Peter Shaojui Wang, Shou-Ching Hsiao, R. Tso
{"title":"Defense against N-pixel Attacks based on Image Reconstruction","authors":"Zi-Yuan Liu, Peter Shaojui Wang, Shou-Ching Hsiao, R. Tso","doi":"10.1145/3384942.3406867","DOIUrl":null,"url":null,"abstract":"Since machine learning and deep learning are largely used for image recognition in real-world applications, how to avoid adversarial attacks become an important issue. It is common that attackers add adversarial perturbation to a normal image in order to fool the models. The N-pixel attack is one of the recently popular adversarial methods by simply changing a few pixels in the image. We observe that changing the few pixels leads to an obvious difference with its neighboring pixels. Therefore, this research aims to defend the N-pixel attacks based on image reconstruction. We develop a three-staged reconstructing algorithm to recover the fooling images. Experimental results show that the accuracy of CIFAR-10 test dataset can reach 92% after applying our proposed algorithm, indicating that the algorithm can maintain the original inference accuracy on normal dataset. Besides, the effectiveness of defending N-pixel attacks is also validated by reconstructing 500 attacked images using the proposed algorithm. The results show that we have a 90% to 92% chance of successful defense, where N=1,3,5,10,and 15.","PeriodicalId":312816,"journal":{"name":"Proceedings of the 8th International Workshop on Security in Blockchain and Cloud Computing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Workshop on Security in Blockchain and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384942.3406867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Since machine learning and deep learning are largely used for image recognition in real-world applications, how to avoid adversarial attacks become an important issue. It is common that attackers add adversarial perturbation to a normal image in order to fool the models. The N-pixel attack is one of the recently popular adversarial methods by simply changing a few pixels in the image. We observe that changing the few pixels leads to an obvious difference with its neighboring pixels. Therefore, this research aims to defend the N-pixel attacks based on image reconstruction. We develop a three-staged reconstructing algorithm to recover the fooling images. Experimental results show that the accuracy of CIFAR-10 test dataset can reach 92% after applying our proposed algorithm, indicating that the algorithm can maintain the original inference accuracy on normal dataset. Besides, the effectiveness of defending N-pixel attacks is also validated by reconstructing 500 attacked images using the proposed algorithm. The results show that we have a 90% to 92% chance of successful defense, where N=1,3,5,10,and 15.