Rebalancing Techniques for Asynchronously Distributed EEG Data to Improve Automatic Seizure Type Classification

N. McCallan, S. Davidson, K. Y. Ng, P. Biglarbeigi, D. Finlay, B. Lan, J. Mclaughlin
{"title":"Rebalancing Techniques for Asynchronously Distributed EEG Data to Improve Automatic Seizure Type Classification","authors":"N. McCallan, S. Davidson, K. Y. Ng, P. Biglarbeigi, D. Finlay, B. Lan, J. Mclaughlin","doi":"10.1109/CISS56502.2023.10089669","DOIUrl":null,"url":null,"abstract":"Epilepsy, a nervous system disorder, is charac-terised by unprovoked, unpredictable, and recurrent seizures. To diagnose epileptic seizures, electroencephalography (EEG) is frequently used in medical settings. Effective automated detection and classification strategies are needed because visual analysis and interpretation of EEG signals consume time and call for specialised expertise. The main objective of this paper is to examine the effectiveness of multiple rebalancing techniques to address the problem of asynchronously distributed data, specifically employing random resampling, synthetic minority oversampling technique (SMOTE), and adaptive synthetic sampling approach for imbalanced learning (ADASYN), for seizure type classification. The model utilises both frequency information using variational mode decomposition (VMD), and phase information by extracting the phase locking value (PLV) across 19 common EEG channels found in the Temple University Hospital EEG Seizure Corpus (TUSZ) v1.5.2 dataset. The random subspace k-nearest neighbour (RSkNN) ensemble classifier is used for seizure type classification of five classes - complex partial seizures (CPSZ), simple partial seizures (SPSZ), absence seizures (ABSZ), tonic clonic seizures (TCSZ), and tonic seizures (TNSZ) - to determine the performance of each rebalancing techniques, with the highest accuracy and weighted F1 score of 96.28% and 0.964, respectively using SMOTE with two nearest neighbours.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy, a nervous system disorder, is charac-terised by unprovoked, unpredictable, and recurrent seizures. To diagnose epileptic seizures, electroencephalography (EEG) is frequently used in medical settings. Effective automated detection and classification strategies are needed because visual analysis and interpretation of EEG signals consume time and call for specialised expertise. The main objective of this paper is to examine the effectiveness of multiple rebalancing techniques to address the problem of asynchronously distributed data, specifically employing random resampling, synthetic minority oversampling technique (SMOTE), and adaptive synthetic sampling approach for imbalanced learning (ADASYN), for seizure type classification. The model utilises both frequency information using variational mode decomposition (VMD), and phase information by extracting the phase locking value (PLV) across 19 common EEG channels found in the Temple University Hospital EEG Seizure Corpus (TUSZ) v1.5.2 dataset. The random subspace k-nearest neighbour (RSkNN) ensemble classifier is used for seizure type classification of five classes - complex partial seizures (CPSZ), simple partial seizures (SPSZ), absence seizures (ABSZ), tonic clonic seizures (TCSZ), and tonic seizures (TNSZ) - to determine the performance of each rebalancing techniques, with the highest accuracy and weighted F1 score of 96.28% and 0.964, respectively using SMOTE with two nearest neighbours.
异步分布脑电图数据再平衡技术改进癫痫类型自动分类
癫痫是一种神经系统疾病,其特点是无端、不可预测和反复发作。为了诊断癫痫发作,脑电图(EEG)在医疗环境中经常使用。有效的自动检测和分类策略是必要的,因为脑电图信号的可视化分析和解释需要耗费时间和专业知识。本文的主要目的是研究多种再平衡技术解决异步分布数据问题的有效性,特别是采用随机重采样、合成少数过采样技术(SMOTE)和用于不平衡学习的自适应合成采样方法(ADASYN)进行癫痫类型分类。该模型利用了使用变分模态分解(VMD)的频率信息和通过提取天普大学医院脑电图发作语库(TUSZ) v1.5.2数据集中19个常见脑电图通道的锁相值(PLV)来获取相位信息。采用随机子空间k-近邻(RSkNN)集成分类器对复杂部分性发作(CPSZ)、简单部分性发作(SPSZ)、失神发作(ABSZ)、强直性阵挛发作(TCSZ)和强直性发作(TNSZ)五类癫痫类型进行分类,确定各再平衡技术的性能,使用两个近邻SMOTE的准确率最高,加权F1得分分别为96.28%和0.964。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信