Trakhtenbrot's Theorem in Coq: Finite Model Theory through the Constructive Lens

Dominik Kirst, Dominique Larchey-Wendling
{"title":"Trakhtenbrot's Theorem in Coq: Finite Model Theory through the Constructive Lens","authors":"Dominik Kirst, Dominique Larchey-Wendling","doi":"10.46298/lmcs-18(2:17)2022","DOIUrl":null,"url":null,"abstract":"We study finite first-order satisfiability (FSAT) in the constructive setting\nof dependent type theory. Employing synthetic accounts of enumerability and\ndecidability, we give a full classification of FSAT depending on the\nfirst-order signature of non-logical symbols. On the one hand, our development\nfocuses on Trakhtenbrot's theorem, stating that FSAT is undecidable as soon as\nthe signature contains an at least binary relation symbol. Our proof proceeds\nby a many-one reduction chain starting from the Post correspondence problem. On\nthe other hand, we establish the decidability of FSAT for monadic first-order\nlogic, i.e. where the signature only contains at most unary function and\nrelation symbols, as well as the enumerability of FSAT for arbitrary enumerable\nsignatures. To showcase an application of Trakhtenbrot's theorem, we continue\nour reduction chain with a many-one reduction from FSAT to separation logic.\nAll our results are mechanised in the framework of a growing Coq library of\nsynthetic undecidability proofs.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(2:17)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study finite first-order satisfiability (FSAT) in the constructive setting of dependent type theory. Employing synthetic accounts of enumerability and decidability, we give a full classification of FSAT depending on the first-order signature of non-logical symbols. On the one hand, our development focuses on Trakhtenbrot's theorem, stating that FSAT is undecidable as soon as the signature contains an at least binary relation symbol. Our proof proceeds by a many-one reduction chain starting from the Post correspondence problem. On the other hand, we establish the decidability of FSAT for monadic first-order logic, i.e. where the signature only contains at most unary function and relation symbols, as well as the enumerability of FSAT for arbitrary enumerable signatures. To showcase an application of Trakhtenbrot's theorem, we continue our reduction chain with a many-one reduction from FSAT to separation logic. All our results are mechanised in the framework of a growing Coq library of synthetic undecidability proofs.
Coq中的Trakhtenbrot定理:构造透镜下的有限模型理论
研究了相依型理论构造条件下的有限一阶可满足性。利用可枚举性和可判定性的综合解释,我们给出了基于非逻辑符号一阶签名的FSAT的完整分类。一方面,我们的发展集中在Trakhtenbrot定理上,该定理指出,只要签名包含至少二进制关系符号,FSAT是不可确定的。我们的证明从邮政通信问题出发,通过一条多一约简链进行。另一方面,我们建立了单一阶逻辑下FSAT的可判定性,即签名中最多只包含一元函数和关系符号,以及任意可枚举签名的FSAT的可枚举性。为了展示Trakhtenbrot定理的应用,我们继续我们的约简链,从FSAT到分离逻辑的多一约简。我们所有的结果都是在一个不断增长的Coq库的框架内机械化的,这个库包含了合成的不可判定性证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信