Investigating the Impact of Unsupervised Feature-Extraction from Multi-Wavelength Image Data for Photometric Classification of Stars, Galaxies and QSOs

Annika Lindh
{"title":"Investigating the Impact of Unsupervised Feature-Extraction from Multi-Wavelength Image Data for Photometric Classification of Stars, Galaxies and QSOs","authors":"Annika Lindh","doi":"10.21427/D7TX67","DOIUrl":null,"url":null,"abstract":"Accurate classification of astronomical objects currently relies on spectroscopic data. Acquiring this data is time-consuming and expensive compared to photometric data. Hence, improving the accuracy of photometric classification could lead to far better coverage and faster classification pipelines. This paper investigates the benefit of using unsupervised feature-extraction from multi-wavelength image data for photometric classification of stars, galaxies and QSOs. An unsupervised Deep Belief Network is used, giving the model a higher level of interpretability thanks to its generative nature and layer-wise training. A Random Forest classifier is used to measure the contribution of the novel features compared to a set of more traditional baseline features.","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irish Conference on Artificial Intelligence and Cognitive Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21427/D7TX67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate classification of astronomical objects currently relies on spectroscopic data. Acquiring this data is time-consuming and expensive compared to photometric data. Hence, improving the accuracy of photometric classification could lead to far better coverage and faster classification pipelines. This paper investigates the benefit of using unsupervised feature-extraction from multi-wavelength image data for photometric classification of stars, galaxies and QSOs. An unsupervised Deep Belief Network is used, giving the model a higher level of interpretability thanks to its generative nature and layer-wise training. A Random Forest classifier is used to measure the contribution of the novel features compared to a set of more traditional baseline features.
多波长图像数据无监督特征提取对恒星、星系和qso光度分类的影响研究
目前对天体的精确分类依赖于光谱数据。与光度数据相比,获取这些数据既耗时又昂贵。因此,提高光度分类的准确性可能会带来更好的覆盖范围和更快的分类管道。本文研究了多波长图像数据的无监督特征提取在恒星、星系和qso的光度分类中的应用。使用无监督深度信念网络,由于其生成性质和分层训练,使模型具有更高的可解释性。随机森林分类器用于度量新特征与一组更传统的基线特征相比的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信