Max-Margin Offline Pedestrian Tracking with Multiple Cues

Bahman Yari Saeed Khanloo, Ferdinand Stefanus, Mani Ranjbar, Ze-Nian Li, N. Saunier, T. Sayed, Greg Mori
{"title":"Max-Margin Offline Pedestrian Tracking with Multiple Cues","authors":"Bahman Yari Saeed Khanloo, Ferdinand Stefanus, Mani Ranjbar, Ze-Nian Li, N. Saunier, T. Sayed, Greg Mori","doi":"10.1109/CRV.2010.52","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce MMTrack, a hybrid single pedestrian tracking algorithm that puts together the advantages of descriptive and discriminative approaches for tracking. Specifically, we combine the idea of cluster-based appearance modeling and online tracking and employ a max-margin criterion for jointly learning the relative importance of different cues to the system. We believe that the proposed framework for tracking can be of general interest since one can add or remove components or even use other trackers as features in it which can lead to more robustness against occlusion, drift and appearance change. Finally, we demonstrate the effectiveness of our method quantitatively on a real-world data set.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we introduce MMTrack, a hybrid single pedestrian tracking algorithm that puts together the advantages of descriptive and discriminative approaches for tracking. Specifically, we combine the idea of cluster-based appearance modeling and online tracking and employ a max-margin criterion for jointly learning the relative importance of different cues to the system. We believe that the proposed framework for tracking can be of general interest since one can add or remove components or even use other trackers as features in it which can lead to more robustness against occlusion, drift and appearance change. Finally, we demonstrate the effectiveness of our method quantitatively on a real-world data set.
具有多个线索的最大边界离线行人跟踪
在本文中,我们介绍了MMTrack,一种混合行人跟踪算法,它结合了描述性和判别性跟踪方法的优点。具体来说,我们结合了基于聚类的外观建模和在线跟踪的思想,并采用最大边际准则来共同学习不同线索对系统的相对重要性。我们相信所提出的跟踪框架可以引起普遍的兴趣,因为人们可以添加或删除组件,甚至可以使用其他跟踪器作为其中的特征,这可以提高对遮挡、漂移和外观变化的鲁棒性。最后,我们在一个真实世界的数据集上定量地证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信