Predicting QoS in LTE HetNets based on location-independent UE measurements

Jessica Moysen, L. Giupponi, N. Baldo, J. Mangues‐Bafalluy
{"title":"Predicting QoS in LTE HetNets based on location-independent UE measurements","authors":"Jessica Moysen, L. Giupponi, N. Baldo, J. Mangues‐Bafalluy","doi":"10.1109/CAMAD.2015.7390493","DOIUrl":null,"url":null,"abstract":"This paper aims to find patterns of knowledge from physical layer data coming from Heterogeneous Long Term Evolution (LTE) networks. We discuss how the collected data is employed in such a manner that improves Minimization of Drive Tests (MDT) functionality in LTE networks. In particular we aim to predict Quality of Service (QoS) expressed in terms of throughput of the User Datagram Protocol (UDP) traffic flow. We propose regression models to estimate QoS, by extrapolating information independently of the user's physical location. In particular our approach allows to estimate the QoS in any location, based on measurements collected at anytime in the past, or anywhere in the network. This will allow to significantly reduce costs of future network deployments, even in complex and heterogeneous scenarios, such as those foreseen in stadiums, events, etc. We identify three feasible regression models, and we compare results in terms of prediction accuracy.","PeriodicalId":370856,"journal":{"name":"2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)","volume":"91 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD.2015.7390493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper aims to find patterns of knowledge from physical layer data coming from Heterogeneous Long Term Evolution (LTE) networks. We discuss how the collected data is employed in such a manner that improves Minimization of Drive Tests (MDT) functionality in LTE networks. In particular we aim to predict Quality of Service (QoS) expressed in terms of throughput of the User Datagram Protocol (UDP) traffic flow. We propose regression models to estimate QoS, by extrapolating information independently of the user's physical location. In particular our approach allows to estimate the QoS in any location, based on measurements collected at anytime in the past, or anywhere in the network. This will allow to significantly reduce costs of future network deployments, even in complex and heterogeneous scenarios, such as those foreseen in stadiums, events, etc. We identify three feasible regression models, and we compare results in terms of prediction accuracy.
基于位置无关UE测量的LTE HetNets QoS预测
本文旨在从来自异构长期演进(LTE)网络的物理层数据中寻找知识模式。我们将讨论如何以改进LTE网络中驱动器测试最小化(MDT)功能的方式使用收集到的数据。特别是,我们的目标是根据用户数据报协议(UDP)流量的吞吐量来预测服务质量(QoS)。我们提出回归模型来估计QoS,通过推断信息独立于用户的物理位置。特别是,我们的方法允许基于过去任何时间或网络中任何地方收集的测量来估计任何位置的QoS。这将大大降低未来网络部署的成本,即使是在复杂和异构的场景中,例如在体育场馆、活动等中可以预见的场景。我们确定了三种可行的回归模型,并在预测精度方面比较了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信