Two lower bounds for $p$-centered colorings

Loic Dubois, G. Joret, G. Perarnau, Marcin Pilipczuk, Franccois Pitois
{"title":"Two lower bounds for $p$-centered colorings","authors":"Loic Dubois, G. Joret, G. Perarnau, Marcin Pilipczuk, Franccois Pitois","doi":"10.23638/DMTCS-22-4-9","DOIUrl":null,"url":null,"abstract":"Given a graph $G$ and an integer $p$, a coloring $f : V(G) \\to \\mathbb{N}$ is $p$-centered if for every connected subgraph $H$ of $G$, either $f$ uses more than $p$ colors on $H$ or there is a color that appears exactly once in $H$. The notion of $p$-centered colorings plays a central role in the theory of sparse graphs. In this note we show two lower bounds on the number of colors required in a $p$-centered coloring. \nFirst, we consider monotone classes of graphs whose shallow minors have average degree bounded polynomially in the radius, or equivalently (by a result of Dvořak and Norin), admitting strongly sublinear separators. We construct such a class such that $p$-centered colorings require a number of colors exponential in $p$. This is in contrast with a recent result of Pilipczuk and Siebertz, who established a polynomial upper bound in the special case of graphs excluding a fixed minor. \nSecond, we consider graphs of maximum degree $\\Delta$. Debski, Felsner, Micek, and Schroder recently proved that these graphs have $p$-centered colorings with $O(\\Delta^{2-1/p} p)$ colors. We show that there are graphs of maximum degree $\\Delta$ that require $\\Omega(\\Delta^{2-1/p} p \\ln^{-1/p}\\Delta)$ colors in any $p$-centered coloring, thus matching their upper bound up to a logarithmic factor.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"66 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23638/DMTCS-22-4-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Given a graph $G$ and an integer $p$, a coloring $f : V(G) \to \mathbb{N}$ is $p$-centered if for every connected subgraph $H$ of $G$, either $f$ uses more than $p$ colors on $H$ or there is a color that appears exactly once in $H$. The notion of $p$-centered colorings plays a central role in the theory of sparse graphs. In this note we show two lower bounds on the number of colors required in a $p$-centered coloring. First, we consider monotone classes of graphs whose shallow minors have average degree bounded polynomially in the radius, or equivalently (by a result of Dvořak and Norin), admitting strongly sublinear separators. We construct such a class such that $p$-centered colorings require a number of colors exponential in $p$. This is in contrast with a recent result of Pilipczuk and Siebertz, who established a polynomial upper bound in the special case of graphs excluding a fixed minor. Second, we consider graphs of maximum degree $\Delta$. Debski, Felsner, Micek, and Schroder recently proved that these graphs have $p$-centered colorings with $O(\Delta^{2-1/p} p)$ colors. We show that there are graphs of maximum degree $\Delta$ that require $\Omega(\Delta^{2-1/p} p \ln^{-1/p}\Delta)$ colors in any $p$-centered coloring, thus matching their upper bound up to a logarithmic factor.
以p为中心着色的两个下界
给定一个图 $G$ 一个整数 $p$,着色 $f : V(G) \to \mathbb{N}$ 是 $p$-居中,对于每个连通子图 $H$ 的 $G$或者 $f$ 使用多于 $p$ 打开颜色 $H$ 或者有一种颜色只出现一次 $H$. 的概念 $p$中心着色在稀疏图理论中起着核心作用。在这个注释中,我们给出了a中所需颜色数的两个下界 $p$中心着色。首先,我们考虑图的单调类,其浅次次在半径上具有多项式的平均度,或者等价地(通过Dvořak和Norin的结果),允许强次线性分隔。我们构造这样一个类 $p$以中心为中心的着色需要数种呈指数增长的颜色 $p$. 这与Pilipczuk和Siebertz最近的结果相反,他们在不含固定次元的图的特殊情况下建立了多项式上界。其次,我们考虑最大度图 $\Delta$. Debski, Felsner, Micek和Schroder最近证明了这些图 $p$以-为中心着色 $O(\Delta^{2-1/p} p)$ 颜色。我们证明了存在极大度的图 $\Delta$ 这需要 $\Omega(\Delta^{2-1/p} p \ln^{-1/p}\Delta)$ 任何颜色 $p$以中心着色,从而使它们的上界与对数因子相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信