Fickle Fingers: Ride-Hail Surge Factors and Taxi Bookings

Sumit Agarwal, Ben Charoenwong, Shih-Fen Cheng, J. Keppo
{"title":"Fickle Fingers: Ride-Hail Surge Factors and Taxi Bookings","authors":"Sumit Agarwal, Ben Charoenwong, Shih-Fen Cheng, J. Keppo","doi":"10.2139/ssrn.3157378","DOIUrl":null,"url":null,"abstract":"We study the role of ride-hailing surge factors on the allocative efficiency of taxis by combining a reduced form estimation with structural analyses using machine-learning-based demand predictions. We estimate an upper-bound of the cross-price elasticity of taxi bookings to surge factors of only 0.26, but incorporating surge factors into a demand-prediction model improves the out-of-sample accuracy by 12-15%. Our structural analyses based on a driver guidance system finds the improved accuracy reduces drivers' vacant roaming times by 9.4% and increases average trips per taxi by 2.3%, suggesting the price information is valuable across platforms, even if elasticities are low.","PeriodicalId":239768,"journal":{"name":"Urban Research eJournal","volume":"67 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Research eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3157378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study the role of ride-hailing surge factors on the allocative efficiency of taxis by combining a reduced form estimation with structural analyses using machine-learning-based demand predictions. We estimate an upper-bound of the cross-price elasticity of taxi bookings to surge factors of only 0.26, but incorporating surge factors into a demand-prediction model improves the out-of-sample accuracy by 12-15%. Our structural analyses based on a driver guidance system finds the improved accuracy reduces drivers' vacant roaming times by 9.4% and increases average trips per taxi by 2.3%, suggesting the price information is valuable across platforms, even if elasticities are low.
变化无常的手指:叫车高峰因素和出租车预订
我们通过结合使用基于机器学习的需求预测的简化形式估计和结构分析,研究了叫车高峰期因素对出租车分配效率的作用。我们估计出租车预订的交叉价格弹性对激增因子的上限仅为0.26,但将激增因子纳入需求预测模型可将样本外精度提高12-15%。我们基于驾驶员引导系统的结构分析发现,准确性的提高使驾驶员的空闲漫游时间减少了9.4%,每辆出租车的平均行程增加了2.3%,这表明价格信息在跨平台上是有价值的,即使弹性较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信