A distributed data-parallel framework for analysis and visualization algorithm development

GPGPU-5 Pub Date : 2012-03-03 DOI:10.1145/2159430.2159432
J. Meredith, R. Sisneros, D. Pugmire, Sean Ahern
{"title":"A distributed data-parallel framework for analysis and visualization algorithm development","authors":"J. Meredith, R. Sisneros, D. Pugmire, Sean Ahern","doi":"10.1145/2159430.2159432","DOIUrl":null,"url":null,"abstract":"The coming generation of supercomputing architectures will require fundamental changes in programming models to effectively make use of the expected million to billion way concurrency and thousand-fold reduction in per-core memory. Most current parallel analysis and visualization tools achieve scalability by partitioning the data, either spatially or temporally, and running serial computational kernels on each data partition, using message passing as needed. These techniques lack the necessary level of data parallelism to execute effectively on the underlying hardware. This paper introduces a framework that enables the expression of analysis and visualization algorithms with memory-efficient execution in a hybrid distributed and data parallel manner on both multi-core and many-core processors. We demonstrate results on scientific data using CPUs and GPUs in scalable heterogeneous systems.","PeriodicalId":232750,"journal":{"name":"GPGPU-5","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GPGPU-5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2159430.2159432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The coming generation of supercomputing architectures will require fundamental changes in programming models to effectively make use of the expected million to billion way concurrency and thousand-fold reduction in per-core memory. Most current parallel analysis and visualization tools achieve scalability by partitioning the data, either spatially or temporally, and running serial computational kernels on each data partition, using message passing as needed. These techniques lack the necessary level of data parallelism to execute effectively on the underlying hardware. This paper introduces a framework that enables the expression of analysis and visualization algorithms with memory-efficient execution in a hybrid distributed and data parallel manner on both multi-core and many-core processors. We demonstrate results on scientific data using CPUs and GPUs in scalable heterogeneous systems.
用于分析和可视化算法开发的分布式数据并行框架
下一代超级计算架构将需要对编程模型进行根本性的改变,以有效地利用预期的百万到十亿倍的并发性,并将每核内存减少数千倍。大多数当前的并行分析和可视化工具通过对数据进行空间或时间分区,并根据需要使用消息传递在每个数据分区上运行串行计算内核来实现可伸缩性。这些技术缺乏必要的数据并行性,无法在底层硬件上有效地执行。本文介绍了一个框架,该框架能够在多核和多核处理器上以混合分布式和数据并行的方式表达具有内存效率的分析和可视化算法。我们展示了在可扩展异构系统中使用cpu和gpu处理科学数据的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信