Quantum Machine Learning in Drug Discovery: Current State and Challenges

Maria Avramouli, I. Savvas, A. Vasilaki, G. Garani, Apostolos Xenakis
{"title":"Quantum Machine Learning in Drug Discovery: Current State and Challenges","authors":"Maria Avramouli, I. Savvas, A. Vasilaki, G. Garani, Apostolos Xenakis","doi":"10.1145/3575879.3576024","DOIUrl":null,"url":null,"abstract":"The drug discovery process is a time-consuming and quite expensive process. The predictive models of machine learning algorithms have been used efficiently for years in various stages of the drug discovery pipeline. The complexity of these algorithms increases as the size of the molecule increases, adding a single atom to a molecule increases the number of possible combinations. Quantum computers with quantum supremacy can play an important role in complex calculations. Combining the two technologies in practice is a complex endeavor that requires diverse, interdisciplinary teams of scientists working together to be able to integrate the two technologies with the goal of reducing cost and time in drug discovery.","PeriodicalId":164036,"journal":{"name":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","volume":"537 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575879.3576024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The drug discovery process is a time-consuming and quite expensive process. The predictive models of machine learning algorithms have been used efficiently for years in various stages of the drug discovery pipeline. The complexity of these algorithms increases as the size of the molecule increases, adding a single atom to a molecule increases the number of possible combinations. Quantum computers with quantum supremacy can play an important role in complex calculations. Combining the two technologies in practice is a complex endeavor that requires diverse, interdisciplinary teams of scientists working together to be able to integrate the two technologies with the goal of reducing cost and time in drug discovery.
量子机器学习在药物发现中的应用:现状与挑战
药物发现过程是一个耗时且相当昂贵的过程。机器学习算法的预测模型已经在药物发现管道的各个阶段有效地使用了多年。这些算法的复杂性随着分子大小的增加而增加,在分子中添加单个原子会增加可能组合的数量。具有量子霸权的量子计算机可以在复杂计算中发挥重要作用。在实践中结合这两种技术是一项复杂的努力,需要不同的、跨学科的科学家团队共同努力,能够将这两种技术结合起来,以减少药物发现的成本和时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信