Learning Concept Hierarchy from Folksonomy

Shubin Cai, Heng Sun, Sishan Gu, Zhong Ming
{"title":"Learning Concept Hierarchy from Folksonomy","authors":"Shubin Cai, Heng Sun, Sishan Gu, Zhong Ming","doi":"10.1109/WISA.2011.16","DOIUrl":null,"url":null,"abstract":"Users often use tags to annotate and categorize web content. A folksonomy is a system of classification derived from the practice and method of collaboratively creating and managing tags. The most significant feature of a folksonomy is that it directly reflects the vocabulary of users. This feature is very useful in tag-based content searching and user browsing. Based on mutual-overlapping measurement of tag's instance sets, an ontology learning algorithm to construct concept hierarchy from folksonomy is proposed. A case study of datasets from a famous Chinese e-business website taobao is carried out. The precision, valid, recall and F-measure rates of the constructed concept hierarchy are 54%, 84%, 100% and 70% respectively. The experimental results on real world datasets show that the proposed method is feasible.","PeriodicalId":242633,"journal":{"name":"2011 Eighth Web Information Systems and Applications Conference","volume":"23 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2011.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Users often use tags to annotate and categorize web content. A folksonomy is a system of classification derived from the practice and method of collaboratively creating and managing tags. The most significant feature of a folksonomy is that it directly reflects the vocabulary of users. This feature is very useful in tag-based content searching and user browsing. Based on mutual-overlapping measurement of tag's instance sets, an ontology learning algorithm to construct concept hierarchy from folksonomy is proposed. A case study of datasets from a famous Chinese e-business website taobao is carried out. The precision, valid, recall and F-measure rates of the constructed concept hierarchy are 54%, 84%, 100% and 70% respectively. The experimental results on real world datasets show that the proposed method is feasible.
从大众分类法学习概念层次
用户经常使用标签对网页内容进行注释和分类。大众分类法是从协作创建和管理标签的实践和方法中派生出来的分类系统。大众分类法最重要的特点是它直接反映用户的词汇。这个特性在基于标签的内容搜索和用户浏览中非常有用。基于标签实例集的相互重叠度量,提出了一种基于大众分类法构建概念层次的本体学习算法。以中国著名电子商务网站淘宝的数据集为例进行了分析。所构建的概念层次的准确率为54%,有效率为84%,查全率为100%,f -测度率为70%。在实际数据集上的实验结果表明,该方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信