Image Super-Resolution Using Image Registration and Neural Network Based Interpolation

Nguyen The Man, Truong Quang Vinh
{"title":"Image Super-Resolution Using Image Registration and Neural Network Based Interpolation","authors":"Nguyen The Man, Truong Quang Vinh","doi":"10.1109/ACOMP.2016.032","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm for image super resolution using image registration and neural network. Our method breaks out the limit of registration-based methods which uses the bicubic interpolation to estimate the missing pixel values. Since bicubic method cannot interpolate these pixels exactly, we need more low-resolution frames at input to increase the super-resolution performance. Our algorithm uses a multi-layer perceptron to get better interpolation. This solution leads to higher quality at high-resolution output image without increasing the input number. Experimental results show that our method improves the performance of image super resolution.","PeriodicalId":133451,"journal":{"name":"2016 International Conference on Advanced Computing and Applications (ACOMP)","volume":"60 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Computing and Applications (ACOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACOMP.2016.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a new algorithm for image super resolution using image registration and neural network. Our method breaks out the limit of registration-based methods which uses the bicubic interpolation to estimate the missing pixel values. Since bicubic method cannot interpolate these pixels exactly, we need more low-resolution frames at input to increase the super-resolution performance. Our algorithm uses a multi-layer perceptron to get better interpolation. This solution leads to higher quality at high-resolution output image without increasing the input number. Experimental results show that our method improves the performance of image super resolution.
基于图像配准和神经网络插值的图像超分辨率
提出了一种基于图像配准和神经网络的图像超分辨率算法。我们的方法突破了基于配准的方法使用双三次插值来估计缺失像素值的限制。由于双三次方法不能准确地插值这些像素,我们需要更多的低分辨率帧作为输入来提高超分辨率性能。我们的算法使用多层感知器来获得更好的插值。这种解决方案可以在不增加输入数量的情况下获得高分辨率输出图像的更高质量。实验结果表明,该方法提高了图像超分辨率的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信