Functional data classification for temporal gene expression data with kernel-induced random forests

Guangzhe Fan, Jiguo Cao, Jiheng Wang
{"title":"Functional data classification for temporal gene expression data with kernel-induced random forests","authors":"Guangzhe Fan, Jiguo Cao, Jiheng Wang","doi":"10.1109/CIBCB.2010.5510482","DOIUrl":null,"url":null,"abstract":"Scientists and others today often collect samples of curves and other functional data. The multivariate data classification methods cannot be directly used for functional data classification because the curse of dimensionality and difficulty in taking in account the correlation and order of functional data. We extend the kernel-induced random forest method for discriminating functional data by defining kernel functions of two curves. This method is demonstrated by classifying the temporal gene expression data. The simulation study and applications show that the kernel-induced random forest method increases the classification accuracy from the available methods. The kernel-induced random forest method is easy to implement by naive users. It is also appealing in its flexibility to allow users to choose different curve estimation methods and appropriate kernel functions.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"473 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Scientists and others today often collect samples of curves and other functional data. The multivariate data classification methods cannot be directly used for functional data classification because the curse of dimensionality and difficulty in taking in account the correlation and order of functional data. We extend the kernel-induced random forest method for discriminating functional data by defining kernel functions of two curves. This method is demonstrated by classifying the temporal gene expression data. The simulation study and applications show that the kernel-induced random forest method increases the classification accuracy from the available methods. The kernel-induced random forest method is easy to implement by naive users. It is also appealing in its flexibility to allow users to choose different curve estimation methods and appropriate kernel functions.
核诱导随机森林对时间基因表达数据的功能数据分类
今天,科学家和其他人经常收集曲线样本和其他功能数据。多变量数据分类方法由于维数的限制和难以考虑功能数据的相关性和顺序,不能直接用于功能数据的分类。通过定义两条曲线的核函数,扩展了判别函数数据的核诱导随机森林方法。通过对时序基因表达数据进行分类,验证了该方法的有效性。仿真研究和应用表明,核诱导随机森林方法比现有方法具有更高的分类精度。核诱导随机森林方法容易被新手用户实现。它的灵活性也很吸引人,允许用户选择不同的曲线估计方法和适当的核函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信