Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xuehua Wang, Xianghu Wang, Jianfeng Huang, Shaoxiang Li, Alan Meng, Zhenjiang Li
{"title":"Interfacial chemical bond and internal electric field modulated Z-scheme S<sub>v</sub>-ZnIn<sub>2</sub>S<sub>4</sub>/MoSe<sub>2</sub> photocatalyst for efficient hydrogen evolution.","authors":"Xuehua Wang,&nbsp;Xianghu Wang,&nbsp;Jianfeng Huang,&nbsp;Shaoxiang Li,&nbsp;Alan Meng,&nbsp;Zhenjiang Li","doi":"10.1038/s41467-021-24511-z","DOIUrl":null,"url":null,"abstract":"<p><p>Construction of Z-scheme heterostructure is of great significance for realizing efficient photocatalytic water splitting. However, the conscious modulation of Z-scheme charge transfer is still a great challenge. Herein, interfacial Mo-S bond and internal electric field modulated Z-scheme heterostructure composed by sulfur vacancies-rich ZnIn<sub>2</sub>S<sub>4</sub> and MoSe<sub>2</sub> was rationally fabricated for efficient photocatalytic hydrogen evolution. Systematic investigations reveal that Mo-S bond and internal electric field induce the Z-scheme charge transfer mechanism as confirmed by the surface photovoltage spectra, DMPO spin-trapping electron paramagnetic resonance spectra and density functional theory calculations. Under the intense synergy among the Mo-S bond, internal electric field and S-vacancies, the optimized photocatalyst exhibits high hydrogen evolution rate of 63.21 mmol∙g<sup>-1</sup>·h<sup>-1</sup> with an apparent quantum yield of 76.48% at 420 nm monochromatic light, which is about 18.8-fold of the pristine ZIS. This work affords a useful inspiration on consciously modulating Z-scheme charge transfer by atomic-level interface control and internal electric field to signally promote the photocatalytic performance.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":"4112"},"PeriodicalIF":14.7000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41467-021-24511-z","citationCount":"336","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-021-24511-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 336

Abstract

Construction of Z-scheme heterostructure is of great significance for realizing efficient photocatalytic water splitting. However, the conscious modulation of Z-scheme charge transfer is still a great challenge. Herein, interfacial Mo-S bond and internal electric field modulated Z-scheme heterostructure composed by sulfur vacancies-rich ZnIn2S4 and MoSe2 was rationally fabricated for efficient photocatalytic hydrogen evolution. Systematic investigations reveal that Mo-S bond and internal electric field induce the Z-scheme charge transfer mechanism as confirmed by the surface photovoltage spectra, DMPO spin-trapping electron paramagnetic resonance spectra and density functional theory calculations. Under the intense synergy among the Mo-S bond, internal electric field and S-vacancies, the optimized photocatalyst exhibits high hydrogen evolution rate of 63.21 mmol∙g-1·h-1 with an apparent quantum yield of 76.48% at 420 nm monochromatic light, which is about 18.8-fold of the pristine ZIS. This work affords a useful inspiration on consciously modulating Z-scheme charge transfer by atomic-level interface control and internal electric field to signally promote the photocatalytic performance.

界面化学键和内部电场调制Z-scheme Sv-ZnIn2S4/MoSe2光催化剂的高效析氢。
z型异质结构的构建对于实现高效光催化水分解具有重要意义。然而,有意识地调制Z-scheme电荷转移仍然是一个巨大的挑战。在此基础上,合理制备了富含硫空位的ZnIn2S4和MoSe2组成的界面Mo-S键和内部电场调制的z型异质结构,实现了高效的光催化析氢。系统研究表明,表面光电压谱、DMPO自旋俘获电子顺磁共振谱和密度泛函理论计算证实了Mo-S键和内部电场诱导Z-scheme电荷转移机制。在Mo-S键、内部电场和s空位的强烈协同作用下,优化后的光催化剂在420 nm单色光下的析氢速率为63.21 mmol∙g-1·h-1,表观量子产率为76.48%,约为原始ZIS的18.8倍。本研究为通过原子级界面控制和内部电场有意识地调节Z-scheme电荷转移以提高光催化性能提供了有益的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信