{"title":"Observation and research of deep underground multi-physical fields-Huainan -848 m deep experiment.","authors":"Yun Wang, Yaxin Yang, Heping Sun, Chengliang Xie, Qisheng Zhang, Xiaoming Cui, Chang Chen, Yongsheng He, Qiangqiang Miao, Chaomin Mu, Lianghui Guo, Jiwen Teng","doi":"10.1007/s11430-022-9998-2","DOIUrl":null,"url":null,"abstract":"<p><p>Compared with the surface, the deep environment has the advantages of allowing \"super-quiet and ultra-clean\"-geophysical field observation with low vibration noise and little electromagnetic interference, which are conducive to therealization of long-term and high-precision observation of multi-physical fields, thus enabling the solution of a series of geoscience problems. In the Panyidong Coal Mine, where there are extensive underground tunnels at the depth of 848 m belowsea level, we carried out the first deep-underground geophysical observations, including radioactivity, gravity, magnetic, magne-totelluric, background vibration and six-component seismic observations. We concluded from these measurements that (1) the background of deep subsurface gravity noise in the long-period frequency band less than 2 Hz is nearly two orders ofmagnitude weaker than that in the surface observation environment; (2) the underground electric field is obviously weaker thanthe surface electric field, and the relatively high frequency of the underground field, greater than 1 Hz, is more than two orders of magnitude weaker than that of the surface electric field; the east-west magnetic field underground is approximately the same asthat at the surface; the relatively high-frequency north-south magnetic field underground, below 10 Hz, is at least one order ofmagnitude lower than that at the surface, showing that the underground has a clean electromagnetic environment; (3) in additionto the high-frequency and single-frequency noises introduced by underground human activities, the deep underground spacehas a sig-nificantly lower background vibration noise than the surface, which is very beneficial to the detection of weakearthquake and gravity signals; and (4) the underground roadway support system built with ferromagnetic material interferesthe geomagnetic field. We also found that for deep observation in the \"ultra-quiet and ultra-clean\" environment, the existinggeophysical equipment and observation technology have problems of poor adaptability and insufficient precision as well asdata cleaning problems, such as the effective separation of the signal and noise of deep observation data. It is also urgent tointerpret and comprehensively utilize these high-precision multi-physics observation data.</p><p><strong>Electronic supplementary material: </strong>Supplementary material is available in the online version of this article at 10.1007/s11430-022-9998-2.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"66 1","pages":"54-70"},"PeriodicalIF":6.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782270/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11430-022-9998-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Compared with the surface, the deep environment has the advantages of allowing "super-quiet and ultra-clean"-geophysical field observation with low vibration noise and little electromagnetic interference, which are conducive to therealization of long-term and high-precision observation of multi-physical fields, thus enabling the solution of a series of geoscience problems. In the Panyidong Coal Mine, where there are extensive underground tunnels at the depth of 848 m belowsea level, we carried out the first deep-underground geophysical observations, including radioactivity, gravity, magnetic, magne-totelluric, background vibration and six-component seismic observations. We concluded from these measurements that (1) the background of deep subsurface gravity noise in the long-period frequency band less than 2 Hz is nearly two orders ofmagnitude weaker than that in the surface observation environment; (2) the underground electric field is obviously weaker thanthe surface electric field, and the relatively high frequency of the underground field, greater than 1 Hz, is more than two orders of magnitude weaker than that of the surface electric field; the east-west magnetic field underground is approximately the same asthat at the surface; the relatively high-frequency north-south magnetic field underground, below 10 Hz, is at least one order ofmagnitude lower than that at the surface, showing that the underground has a clean electromagnetic environment; (3) in additionto the high-frequency and single-frequency noises introduced by underground human activities, the deep underground spacehas a sig-nificantly lower background vibration noise than the surface, which is very beneficial to the detection of weakearthquake and gravity signals; and (4) the underground roadway support system built with ferromagnetic material interferesthe geomagnetic field. We also found that for deep observation in the "ultra-quiet and ultra-clean" environment, the existinggeophysical equipment and observation technology have problems of poor adaptability and insufficient precision as well asdata cleaning problems, such as the effective separation of the signal and noise of deep observation data. It is also urgent tointerpret and comprehensively utilize these high-precision multi-physics observation data.
Electronic supplementary material: Supplementary material is available in the online version of this article at 10.1007/s11430-022-9998-2.
期刊介绍:
Science China Earth Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.