Kaitlin A Marquis, Carter Merenstein, Frederic D Bushman
{"title":"2-Hydroxyisovalerate Is Produced During Bacterial Vaginosis and Boosts HIV Infection in Resting T Cells.","authors":"Kaitlin A Marquis, Carter Merenstein, Frederic D Bushman","doi":"10.1089/AID.2022.0171","DOIUrl":null,"url":null,"abstract":"<p><p>Human immunodeficiency virus (HIV) infection and the ensuing acquired immunodeficiency syndrome (AIDS) disproportionally affect young women, yet understanding of the factors promoting heterosexual transmission in the female genital tract is limited. Colonization with highly diverse, <i>Lactobacillus-</i>deficient communities (HDCs) increases a woman's risk of acquiring HIV-1 compared with colonization with <i>Lactobacillus-</i>dominated low diversity communities (LDCs). The polymicrobial nature of these communities has made it challenging to elucidate the microbial mechanisms responsible for modulating HIV susceptibility. Here, we analyzed conserved changes in small-molecule metabolites present in the cervicovaginal lavage fluid collected from women colonized with HDCs and LDCs with the goal of identifying possible chemicals influencing HIV infection. As in previous studies, we found that the catabolite of the branched-chain amino acid valine, 2-hydroxyisovalerate (2-HV), was a consistent component of dysbiotic HDC microbiota. Effects of 2-HV on HIV infection were assessed. In experimental infections with HIV, treatment with 2-HV increased infections of resting CD4<sup>+</sup> T cells. To understand bacterial production of 2-HV in more detail, we cultured purified HDC and LDC bacteria and used mass spectrometry to identify two HDC bacteria that synthesize high levels of 2-HV. In contrast, protective vaginal <i>Lactobacilli</i> did not produce high levels of 2-HV. A genomic analysis of genes encoding 2-HV synthetic pathways showed a correlation between high-level production of 2-HV and pathways for synthesis of the immediate precursor 2-ketoisovalerate. Thus, 2-HV is a candidate mediator linking vaginal microbiome structure and heterosexual HIV transmission in women.</p>","PeriodicalId":7544,"journal":{"name":"AIDS research and human retroviruses","volume":" ","pages":"158-170"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIDS research and human retroviruses","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/AID.2022.0171","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human immunodeficiency virus (HIV) infection and the ensuing acquired immunodeficiency syndrome (AIDS) disproportionally affect young women, yet understanding of the factors promoting heterosexual transmission in the female genital tract is limited. Colonization with highly diverse, Lactobacillus-deficient communities (HDCs) increases a woman's risk of acquiring HIV-1 compared with colonization with Lactobacillus-dominated low diversity communities (LDCs). The polymicrobial nature of these communities has made it challenging to elucidate the microbial mechanisms responsible for modulating HIV susceptibility. Here, we analyzed conserved changes in small-molecule metabolites present in the cervicovaginal lavage fluid collected from women colonized with HDCs and LDCs with the goal of identifying possible chemicals influencing HIV infection. As in previous studies, we found that the catabolite of the branched-chain amino acid valine, 2-hydroxyisovalerate (2-HV), was a consistent component of dysbiotic HDC microbiota. Effects of 2-HV on HIV infection were assessed. In experimental infections with HIV, treatment with 2-HV increased infections of resting CD4+ T cells. To understand bacterial production of 2-HV in more detail, we cultured purified HDC and LDC bacteria and used mass spectrometry to identify two HDC bacteria that synthesize high levels of 2-HV. In contrast, protective vaginal Lactobacilli did not produce high levels of 2-HV. A genomic analysis of genes encoding 2-HV synthetic pathways showed a correlation between high-level production of 2-HV and pathways for synthesis of the immediate precursor 2-ketoisovalerate. Thus, 2-HV is a candidate mediator linking vaginal microbiome structure and heterosexual HIV transmission in women.
期刊介绍:
AIDS Research and Human Retroviruses was the very first AIDS publication in the field over 30 years ago, and today it is still the critical resource advancing research in retroviruses, including AIDS. The Journal provides the broadest coverage from molecular biology to clinical studies and outcomes research, focusing on developments in prevention science, novel therapeutics, and immune-restorative approaches. Cutting-edge papers on the latest progress and research advances through clinical trials and examination of targeted antiretroviral agents lead to improvements in translational medicine for optimal treatment outcomes.
AIDS Research and Human Retroviruses coverage includes:
HIV cure research
HIV prevention science
- Vaccine research
- Systemic and Topical PreP
Molecular and cell biology of HIV and SIV
Developments in HIV pathogenesis and comorbidities
Molecular biology, immunology, and epidemiology of HTLV
Pharmacology of HIV therapy
Social and behavioral science
Rapid publication of emerging sequence information.