{"title":"Deep recurrent Gaussian Nesterovs recommendation using multi-agent in social networks.","authors":"Vinita Tapaskar, Mallikarjun M Math","doi":"10.1007/s12530-022-09435-3","DOIUrl":null,"url":null,"abstract":"<p><p>Due to increasing volume of big data the high volume of information in Social Network put a stop to users from acquiring serviceable information intelligently so many recommendation systems have emerged. Multi-agent Deep Learning gains rapid attraction, and the latest accomplishments address problems with real-world complexity. With big data precise recommendation has yet to be answered. In proposed work Deep Recurrent Gaussian Nesterov's Optimal Gradient (DR-GNOG) that combines deep learning with a multi-agent scenario for optimal and precise recommendation. The DR-GNOG is split into three layers, an input layer, two hidden layers and an output layer. The tweets obtained from the users are provided to the input layer by the Tweet Accumulator Agent. Then, in the first hidden layer, Tweet Classifier Agent performs optimized and relevant tweet classification by means of Gaussian Nesterov's Optimal Gradient model. In the second layer, a Deep Recurrent Predictive Recommendation model is designed to concentrate on the vanishing gradient issue arising due to updated tweets obtained from same user at different time instance. Finally, with the aid of hyperbolic activation function in the output layer, building block of the predictive recommendation is obtained. In the experimental study the proposed method is found better than existing GANCF and Bootstrapping method 13-21% in case of recommendation accuracy, 22-32% better in recommendation time and 15-22% better in recall rate.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"13 3","pages":"435-452"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994100/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolving Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12530-022-09435-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Due to increasing volume of big data the high volume of information in Social Network put a stop to users from acquiring serviceable information intelligently so many recommendation systems have emerged. Multi-agent Deep Learning gains rapid attraction, and the latest accomplishments address problems with real-world complexity. With big data precise recommendation has yet to be answered. In proposed work Deep Recurrent Gaussian Nesterov's Optimal Gradient (DR-GNOG) that combines deep learning with a multi-agent scenario for optimal and precise recommendation. The DR-GNOG is split into three layers, an input layer, two hidden layers and an output layer. The tweets obtained from the users are provided to the input layer by the Tweet Accumulator Agent. Then, in the first hidden layer, Tweet Classifier Agent performs optimized and relevant tweet classification by means of Gaussian Nesterov's Optimal Gradient model. In the second layer, a Deep Recurrent Predictive Recommendation model is designed to concentrate on the vanishing gradient issue arising due to updated tweets obtained from same user at different time instance. Finally, with the aid of hyperbolic activation function in the output layer, building block of the predictive recommendation is obtained. In the experimental study the proposed method is found better than existing GANCF and Bootstrapping method 13-21% in case of recommendation accuracy, 22-32% better in recommendation time and 15-22% better in recall rate.
期刊介绍:
Evolving Systems covers surveys, methodological, and application-oriented papers in the area of dynamically evolving systems. ‘Evolving systems’ are inspired by the idea of system model evolution in a dynamically changing and evolving environment. In contrast to the standard approach in machine learning, mathematical modelling and related disciplines where the model structure is assumed and fixed a priori and the problem is focused on parametric optimisation, evolving systems allow the model structure to gradually change/evolve. The aim of such continuous or life-long learning and domain adaptation is self-organization. It can adapt to new data patterns, is more suitable for streaming data, transfer learning and can recognise and learn from unknown and unpredictable data patterns. Such properties are critically important for autonomous, robotic systems that continue to learn and adapt after they are being designed (at run time).
Evolving Systems solicits publications that address the problems of all aspects of system modelling, clustering, classification, prediction and control in non-stationary, unpredictable environments and describe new methods and approaches for their design.
The journal is devoted to the topic of self-developing, self-organised, and evolving systems in its entirety — from systematic methods to case studies and real industrial applications. It covers all aspects of the methodology such as
Evolving Systems methodology
Evolving Neural Networks and Neuro-fuzzy Systems
Evolving Classifiers and Clustering
Evolving Controllers and Predictive models
Evolving Explainable AI systems
Evolving Systems applications
but also looking at new paradigms and applications, including medicine, robotics, business, industrial automation, control systems, transportation, communications, environmental monitoring, biomedical systems, security, and electronic services, finance and economics. The common features for all submitted methods and systems are the evolving nature of the systems and the environments.
The journal is encompassing contributions related to:
1) Methods of machine learning, AI, computational intelligence and mathematical modelling
2) Inspiration from Nature and Biology, including Neuroscience, Bioinformatics and Molecular biology, Quantum physics
3) Applications in engineering, business, social sciences.