Anmol Gupta, Ronnie Daniel, Akash Rao, Partha Pratim Roy, Sushil Chandra, Byung-Gyu Kim
{"title":"Raw Electroencephalogram-Based Cognitive Workload Classification Using Directed and Nondirected Functional Connectivity Analysis and Deep Learning.","authors":"Anmol Gupta, Ronnie Daniel, Akash Rao, Partha Pratim Roy, Sushil Chandra, Byung-Gyu Kim","doi":"10.1089/big.2021.0204","DOIUrl":null,"url":null,"abstract":"<p><p>With the phenomenal rise in internet-of-things devices, the use of electroencephalogram (EEG) based brain-computer interfaces (BCIs) can empower individuals to control equipment with thoughts. These allow BCI to be used and pave the way for pro-active health management and the development of internet-of-medical-things architecture. However, EEG-based BCIs have low fidelity, high variance, and EEG signals are very noisy. These challenges compel researchers to design algorithms that can process big data in real-time while being robust to temporal variations and other variations in the data. Another issue in designing a passive BCI is the regular change in user's cognitive state (measured through cognitive workload). Though considerable amount of research has been conducted on this front, methods that could withstand high variability in EEG data and still reflect the neuronal dynamics of cognitive state variations are lacking and much needed in literature. In this research, we evaluate the efficacy of a combination of functional connectivity algorithms and state-of-the-art deep learning algorithms for the classification of three different levels of cognitive workload. We acquire 64-channel EEG data from 23 participants executing the n-back task at three different levels; 1-back (low-workload condition), 2-back (medium-workload condition), and 3-back (high-workload condition). We compared two different functional connectivity algorithms, namely phase transfer entropy (PTE) and mutual information (MI). PTE is a directed functional connectivity algorithm, whereas MI is non-directed. Both methods are suitable for extracting functional connectivity matrices in real-time, which could eventually be used for rapid, robust, and efficient classification. For classification, we use the recently proposed BrainNetCNN deep learning model, designed specifically to classify functional connectivity matrices. Results reveal a classification accuracy of 92.81% with MI and BrainNetCNN and a staggering 99.50% with PTE and BrainNetCNN on test data. PTE can yield a higher classification accuracy due to its robustness to linear mixing of the data and its ability to detect functional connectivity across a range of analysis lags.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"11 4","pages":"307-319"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2021.0204","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
With the phenomenal rise in internet-of-things devices, the use of electroencephalogram (EEG) based brain-computer interfaces (BCIs) can empower individuals to control equipment with thoughts. These allow BCI to be used and pave the way for pro-active health management and the development of internet-of-medical-things architecture. However, EEG-based BCIs have low fidelity, high variance, and EEG signals are very noisy. These challenges compel researchers to design algorithms that can process big data in real-time while being robust to temporal variations and other variations in the data. Another issue in designing a passive BCI is the regular change in user's cognitive state (measured through cognitive workload). Though considerable amount of research has been conducted on this front, methods that could withstand high variability in EEG data and still reflect the neuronal dynamics of cognitive state variations are lacking and much needed in literature. In this research, we evaluate the efficacy of a combination of functional connectivity algorithms and state-of-the-art deep learning algorithms for the classification of three different levels of cognitive workload. We acquire 64-channel EEG data from 23 participants executing the n-back task at three different levels; 1-back (low-workload condition), 2-back (medium-workload condition), and 3-back (high-workload condition). We compared two different functional connectivity algorithms, namely phase transfer entropy (PTE) and mutual information (MI). PTE is a directed functional connectivity algorithm, whereas MI is non-directed. Both methods are suitable for extracting functional connectivity matrices in real-time, which could eventually be used for rapid, robust, and efficient classification. For classification, we use the recently proposed BrainNetCNN deep learning model, designed specifically to classify functional connectivity matrices. Results reveal a classification accuracy of 92.81% with MI and BrainNetCNN and a staggering 99.50% with PTE and BrainNetCNN on test data. PTE can yield a higher classification accuracy due to its robustness to linear mixing of the data and its ability to detect functional connectivity across a range of analysis lags.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.