{"title":"Stromal cell-derived factor-1α regulates chondrogenic differentiation <i>via</i> activation of the Wnt/β-catenin pathway in mesenchymal stem cells.","authors":"Xiao Chen, Xia-Ming Liang, Jia Zheng, Yong-Hui Dong","doi":"10.4252/wjsc.v15.i5.490","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mesenchymal stem cells (MSCs) have been applied to treat degenerative articular diseases, and stromal cell-derived factor-1α (SDF-1α) may enhance their therapeutic efficacy. However, the regulatory effects of SDF-1α on cartilage differentiation remain largely unknown. Identifying the specific regulatory effects of SDF-1α on MSCs will provide a useful target for the treatment of degenerative articular diseases.</p><p><strong>Aim: </strong>To explore the role and mechanism of SDF-1α in cartilage differentiation of MSCs and primary chondrocytes.</p><p><strong>Methods: </strong>The expression level of C-X-C chemokine receptor 4 (CXCR4) in MSCs was assessed by immunofluorescence. MSCs treated with SDF-1α were stained for alkaline phosphatase (ALP) and with Alcian blue to observe differentiation. Western blot analysis was used to examine the expression of SRY-box transcription factor 9, aggrecan, collagen II, runt-related transcription factor 2, collagen X, and matrix metalloproteinase (MMP)13 in untreated MSCs, of aggrecan, collagen II, collagen X, and MMP13 in SDF-1α-treated primary chondrocytes, of glycogen synthase kinase 3β (GSK3β) p-GSK3β and β-catenin expression in SDF-1α-treated MSCs, and of aggrecan, collagen X, and MMP13 in SDF-1α-treated MSCs in the presence or absence of ICG-001 (SDF-1α inhibitor).</p><p><strong>Results: </strong>Immunofluorescence showed CXCR4 expression in the membranes of MSCs. ALP stain was intensified in MSCs treated with SDF-1α for 14 d. The SDF-1α treatment promoted expression of collagen X and MMP13 during cartilage differentiation, whereas it had no effect on the expression of collagen II or aggrecan nor on the formation of cartilage matrix in MSCs. Further, those SDF-1α-mediated effects on MSCs were validated in primary chondrocytes. SDF-1α promoted the expression of p-GSK3β and β-catenin in MSCs. And, finally, inhibition of this pathway by ICG-001 (5 µmol/L) neutralized the SDF-1α-mediated up-regulation of collagen X and MMP13 expression in MSCs.</p><p><strong>Conclusion: </strong>SDF-1α may promote hypertrophic cartilage differentiation in MSCs by activating the Wnt/β-catenin pathway. These findings provide further evidence for the use of MSCs and SDF-1α in the treatment of cartilage degeneration and osteoarthritis.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 5","pages":"490-501"},"PeriodicalIF":3.6000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/49/8b/WJSC-15-490.PMC10277961.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v15.i5.490","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mesenchymal stem cells (MSCs) have been applied to treat degenerative articular diseases, and stromal cell-derived factor-1α (SDF-1α) may enhance their therapeutic efficacy. However, the regulatory effects of SDF-1α on cartilage differentiation remain largely unknown. Identifying the specific regulatory effects of SDF-1α on MSCs will provide a useful target for the treatment of degenerative articular diseases.
Aim: To explore the role and mechanism of SDF-1α in cartilage differentiation of MSCs and primary chondrocytes.
Methods: The expression level of C-X-C chemokine receptor 4 (CXCR4) in MSCs was assessed by immunofluorescence. MSCs treated with SDF-1α were stained for alkaline phosphatase (ALP) and with Alcian blue to observe differentiation. Western blot analysis was used to examine the expression of SRY-box transcription factor 9, aggrecan, collagen II, runt-related transcription factor 2, collagen X, and matrix metalloproteinase (MMP)13 in untreated MSCs, of aggrecan, collagen II, collagen X, and MMP13 in SDF-1α-treated primary chondrocytes, of glycogen synthase kinase 3β (GSK3β) p-GSK3β and β-catenin expression in SDF-1α-treated MSCs, and of aggrecan, collagen X, and MMP13 in SDF-1α-treated MSCs in the presence or absence of ICG-001 (SDF-1α inhibitor).
Results: Immunofluorescence showed CXCR4 expression in the membranes of MSCs. ALP stain was intensified in MSCs treated with SDF-1α for 14 d. The SDF-1α treatment promoted expression of collagen X and MMP13 during cartilage differentiation, whereas it had no effect on the expression of collagen II or aggrecan nor on the formation of cartilage matrix in MSCs. Further, those SDF-1α-mediated effects on MSCs were validated in primary chondrocytes. SDF-1α promoted the expression of p-GSK3β and β-catenin in MSCs. And, finally, inhibition of this pathway by ICG-001 (5 µmol/L) neutralized the SDF-1α-mediated up-regulation of collagen X and MMP13 expression in MSCs.
Conclusion: SDF-1α may promote hypertrophic cartilage differentiation in MSCs by activating the Wnt/β-catenin pathway. These findings provide further evidence for the use of MSCs and SDF-1α in the treatment of cartilage degeneration and osteoarthritis.
期刊介绍:
The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.